LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600034

B.Sc. DEGREE EXAMINATION - MATHEMATICS

SIXTH SEMESTER - APRIL 2023
MT 6603 - COMPLEX ANALYSIS

Date: 15-05-2023
Time: 09:00 AM - 12:00 NOON

Part A

Answer ALL questions:

$(10 \times 2=20)$

1. Find the absolute value of $\frac{(1+3 i)(1-2 i)}{3+4 i}$.
2. Define harmonic function.
3. Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^{n}}{n}$.
4. Using Cauchy integral formula, evaluate $\int_{\boldsymbol{C}} \frac{e^{z}}{z}$ where \boldsymbol{C} is the unit circle $|z|=\mathbf{1}$.
5. State Morera's theorem.
6. Write Maclaurin series expansion of $\sin z$.
7. Define removable and essential singularities.
8. State Argument principle.
9. Define critical point.
10. Define a bilinear transformation.

Part-B

Answer any FIVE questions:
11. Show that the function $f(z)=\sqrt{|x y|}$ is not regular at the origin, although Cauchy-Riemann equations are satisfied at the origin.
12. Prove that $u(x, y)=y^{3}-3 x^{2} y$ is harmonic and find it's harmonic conjugate.
13. State and prove Liouville's theorem.
14. Expand $f(z)=\frac{-1}{(z-1)(z-2)}$ in a Laurent's series in (i) $1<|z|<2$ and (ii) $|z|>2$.
15. State and prove Cauchy's residue theorem.
16. Evaluate $\int_{C} \frac{e^{z}}{(z+2)(z+1)^{2}} d z$ where C is $|z|=3$.
17. Show that any bilinear transformation can be expressed as a product of translation, rotation, magnification or contraction and inversion.
18. Find the bilinear transformation which maps the points $z_{1}=2, z_{2}=i, z_{3}=-2$ onto $w_{1}=1, w_{2}=i, w_{3}=-1$.

Part C

Answer any TWO questions:
19. State and prove the necessary and sufficient condition for differentiability of a complex valued function.
20. (a) State and prove Cauchy integral formula.
(b) Using contour integration evaluate $\int_{0}^{2 \pi} \frac{d \theta}{5+4 \sin \theta}$.
21.(a) State and Prove Taylor's theorem.
(b) Show that $\frac{1}{z^{2}}=\frac{1}{4}+\frac{1}{4} \sum_{n=1}^{\infty}(-1)^{n}(n+1)\left(\frac{z-2}{2}\right)^{n}$ when $|z-2|<2$.
22. (a) Show that any bilinear transformation which maps the unit circle $|z|=1$ onto

(b) State and prove Rouche's theorem.

